Topologies | |
City topology
In the City topology distance is calculated as sum of the distances for
every value. On picture below is shown the neighborhood with radius 1.
![]() In the code can be define as:
neural_net::City_topology < size_t > city_top();
Maximum topology
In the Maximum topology distance is calculated as maximum of the distances for
every value. On picture below is shown the neighborhood with radius 1.
![]() In the code can be define as:
neural_net::Max_topology < size_t > max_top();
Hexagonal topology
In the Hexagonal topology distance is calculated in the way shown below,
index_1_1 - is row number of the first neuron, index_1_2 - is column number of the first neuron, index_1_1 - is row number of the first neuron, index_1_2 - is column number of the first neuron, hex_offset - is a integer number - its optimal value can be set as number of rows in neural network (matrix).
// recalculate indexes to the better indexes used in hexagonal space
hex_index_1_1 = ( index_1_1 + 1 ) / 2 + index_1_2; hex_index_1_2 = ( hex_offset / 2 + index_1_2 ) - index_1_1 / 2; hex_index_2_1 = ( index_2_1 + 1 ) / 2 + index_2_2; hex_index_2_2 = ( hex_offset / 2 + index_2_2 ) - index_2_1 / 2; // calculate difference between points in hexagonal space tmp_hex_index_1 = std::max ( hex_index_1_1, hex_index_2_1 ) - std::min ( hex_index_1_1, hex_index_2_1 ); tmp_hex_index_2 = std::max ( hex_index_1_2, hex_index_2_2 ) - std::min ( hex_index_1_2, hex_index_2_2 ); // here we have special algebra to calculate distance, // bacause of special basis in this space: // ( 1, 1 ); ( -1, -1 ) have distance 1 the same as // ( -1, 0 ); ( 0, -1 ); ( 1, 0 ); ( 0, 1 ). if ( tmp_hex_index_1 == 0 && tmp_hex_index_2 == 0 ) { return 0; } // check if values have the same direction // if yes it means that we have to use // reasoning based on assumption // that ( -1, -1 ) and ( 1, 1 ) have distance 1. if ( ( ( hex_index_1_1 > hex_index_2_1 ) && ( hex_index_1_2 > hex_index_2_2 ) ) || ( ( hex_index_1_1 < hex_index_2_1 ) && ( hex_index_1_2 < hex_index_2_2 ) ) ) { return max ( tmp_hex_index_1, tmp_hex_index_2 ); } else { return abs ( tmp_hex_index_1 ) + abs ( tmp_hex_index_2 ); }
On picture below is shown the neighborhood with radius 1.
![]() In the code can be define as below, but with respect that there is no default constructor.
typedef neural_net::Hexagonal_topology < size_t > Hex_top;
Hex_top hex_top ( kohonen_network.get_no_rows() ); |